Loading...
2 results
Search Results
Now showing 1 - 2 of 2
- Linking cardiorespiratory fitness classification criteria to early subclinical atherosclerosis in childrenPublication . Melo, Xavier; Santa-Clara, Helena; Santos, Diana; Pimenta, Nuno M.; Minderico, Cláudia S.; Fernhall, Bo; Sardinha, Luís B.It is unclear if cardiorespiratory fitness (CRF) can be used as a screening tool for premature changes in carotid intima-media thickness (cIMT) in paediatric populations. The purpose of this cross-sectional study was 3-fold: (i) to determine if CRF can be used to screen increased cIMT; (ii) to determine an optimal CRF cut-off to predict increased cIMT; and (iii) to evaluate its ability to predict increased cIMT among children in comparison with existent CRF cut-offs. cIMT was assessed with high-resolution ultrasonography and CRF was determined using a maximal cycle test. Receiver operating characteristic analyses were conducted in boys (n = 211) and girls (n = 202) aged 11-12 years to define the optimal sex-specific CRF cut-off to classify increased cIMT (≥75th percentile). Logistic regression was used to examine the association between the CRF cut-offs with the risk of having an increased cIMT. The optimal CRF cut-offs to predict increased cIMT were 45.81 and 34.46 mL·kg(-1)·min(-1) for boys and girls, respectively. The odds-ratios for having increased cIMT among children who were unfit was up to 2.8 times the odds among those who were fit (95% confidence interval: 1.40-5.53). Considering current CRF cut-offs, only those suggested by Adegboye et al. 2011. (Br. J. Sports Med. 45(9): 722-728) and Boddy et al. 2012 (PLoS One, 7(9): e45755) were significant in predicting increased cIMT. In conclusion, CRF cut-offs (boys: ≤ 45.8; girls: ≤ 34.5 mL·kg(-1)·min(-1)) are associated with thickening of the arterial wall in 11- to 12-year-old children. Low CRF is an important cardiovascular risk factor in children and our data highlight the importance of obtaining an adequate CRF.
- The acute effect of maximal exercise on central and peripheral arterial stiffness indices and hemodynamics in children and adultsPublication . Melo, Xavier; Fernhall, Bo; Santos, Diana; Pinto, Rita; Pimenta, Nuno; Sardinha, Luis; Santa-Clara, HelenaThis study compared the effects of a bout of maximal running exercise on arterial stiffness in children and adults. Right carotid blood pressure and artery stiffness indices measured by pulse wave velocity (PWV), compliance and distensibility coefficients, stiffness index α and β (echo-tracking), contralateral carotid blood pressure, and upper and lower limb and central/aortic PWV (applanation tonometry) were taken at rest and 10 min after a bout of maximal treadmill running in 34 children (7.38 ± 0.38 years) and 45 young adults (25.22 ± 0.91 years) having similar aerobic potential. Two-by-two repeated measures analysis of variance and analysis of covariance were used to detect differences with exercise between groups. Carotid pulse pressure (PP; η(2) = 0.394) increased more in adults after exercise (p < 0.05). Compliance (η(2) = 0.385) decreased in particular in adults and in those with high changes in distending pressure, similarly to stiffness index α and β. Carotid PWV increased more in adults and was related to local changes in PP but not mean arterial pressure (MAP). Stiffness in the lower limbs decreased (η(2) = 0.115) but apparently only in those with small MAP changes (η(2) = 0.111). No significant exercise or group interaction effects were found when variables were adjusted to height. An acute bout of maximal exercise can alter arterial stiffness and hemodynamics in the carotid artery and within the active muscle beds. Arterial stiffness and hemodynamic response to metabolic demands during exercise in children simply reflect their smaller body size and may not indicate a particular physiological difference compared with adults.