Repository logo
 

Search Results

Now showing 1 - 2 of 2
  • A Rapidly Incremented Tethered-Swimming Maximal Protocol for Cardiorespiratory Assessment of Swimmers
    Publication . Pessôa Filho, Dalton M.; Massini, Danilo A.; Siqueira, Leandro O. C.; Santos, Luiz Gustavo A.; Vasconcelos, Camila M. T.; Almeida, Tiago A. F.; Espada, Mário; Reis, Joana F.; Alves, Francisco B.; DiMenna, Fred J.
    Incremental exercise testing is the standard means of assessing cardiorespiratory capacity of endurance athletes. While the maximal rate of oxygen consumption is typically used as the criterion measurement in this regard, two metabolic breakpoints that reflect changes in the dynamics of lactate production/consumption as the work rate is increased are perhaps more relevant for endurance athletes from a functional standpoint. Exercise economy, which represents the rate of oxygen consumption relative to performance of submaximal work, is also an important parameter to measure for endurance-athlete assessment. Ramp incremental tests comprising a gradual but rapid increase in work rate until the limit of exercise tolerance is reached are useful for determining these parameters. This type of test is typically performed on a cycle ergometer or treadmill because there is a need for precision with respect to work-rate incrementation. However, athletes should be tested while performing the mode of exercise required for their sport. Consequently, swimmers are typically assessed during free-swimming incremental tests where such precision is difficult to achieve. We have recently suggested that stationary swimming against a load that is progressively increased (incremental tethered swimming) can serve as a "swim ergometer" by allowing sufficient precision to accommodate a gradual but rapid loading pattern that reveals the aforementioned metabolic breakpoints and exercise economy. However, the degree to which the peak rate of oxygen consumption achieved during such a protocol approximates the maximal rate that is measured during free swimming remains to be determined. In the present article, we explain how this rapidly incremented tethered-swimming protocol can be employed to assess the cardiorespiratory capacity of a swimmer. Specifically, we explain how assessment of a short-distance competitive swimmer using this protocol revealed that his rate of oxygen uptake was 30.3 and 34.8 mL∙min 1∙kg-1BM at his gas-exchange threshold and respiratory compensation point, respectively.
  • V̇O2 kinetics and energy contribution in simulated maximal performance during short and middle distance-trials in swimming
    Publication . Almeida, Nalvo F; Pessôa Filho, Dalton; Espada, Mário; Reis, Joana F.; Simionato, Astor R.; Siqueira, Leandro O. C.; Alves, Francisco B.
    Purpose: This study aims to analyze swimmers' oxygen uptake kinetics ([Formula: see text]K) and bioenergetic profiles in 50, 100, and 200 m simulated swimming events and determine which physiological variables relate with performance. Methods: Twenty-eight well-trained swimmers completed an incremental test for maximal oxygen uptake (Peak-[Formula: see text]) and maximal aerobic velocity (MAV) assessment. Maximal trials (MT) of 50, 100, and 200-m in front crawl swimming were performed for [Formula: see text]K and bioenergetic profile. [Formula: see text]K parameters were calculated through monoexponential modeling and by a new growth rate method. The recovery phase was used along with the blood lactate concentration for bioenergetics profiling. Results: Peak-[Formula: see text] (57.47 ± 5.7 ml kg-1 min-1 for male and 53.53 ± 4.21 ml kg-1 min-1 for female) did not differ from [Formula: see text]peak attained at the 200-MT for female and at the 100 and 200-MT for male. From the 50-MT to 100-MT and to the 200-MT the [Formula: see text]K presented slower time constants (8.6 ± 2.3 s, 11.5 ± 2.4 s and 16.7 ± 5.5 s, respectively), the aerobic contribution increased (~ 34%, 54% and 71%, respectively) and the anaerobic decreased (~ 66%, 46% and 29%, respectively), presenting a cross-over in the 100-MT. Both energy systems, MAV, Peak-[Formula: see text], and [Formula: see text] peak of the MT's were correlated with swimming performance. Discussion: The aerobic energy contribution is an important factor for performance in 50, 100, and 200-m, regardless of the time taken to adjust the absolute oxidative response, when considering the effect on a mixed-group regarding sex. [Formula: see text]K speeding could be explained by a faster initial pacing strategy used in the shorter distances, that contributed for a more rapid increase of the oxidative contribution to the energy turnover