Loading...
2 results
Search Results
Now showing 1 - 2 of 2
- Comparison between overweight due to pregnancy and due to added weight to simulate body mass distribution in pregnancyPublication . Aguiar, Liliana; Santos-Rocha, Rita; Vieira, Maria Filomena; Branco, Marco A. C.; Andrade, Carlos; Veloso, AntónioThe assessment of biomechanical loading in the musculoskeletal system of the pregnant women is particularly interesting since they are subject to morphological, physiological and hormonal changes, which may lead to adaptations in gait. The purpose of this study was to analyze the effect of the increased mass in the trunk associated to pregnancy on the lower limb and pelvis, during walking, on temporal-distance parameters, joint range of motion and moments of force, by comparing a pregnant women group to a non-pregnant group, and to this group while carrying a 5 kg additional load located in the abdomen and breasts during walking, to understand which gait adaptations may be more related with the increased trunk mass, or if may be more associated with other factors such as the girth of the thigh. The subjects performed a previous 12 min training adaption to the added load. To calculate ankle, knee and hip joint angles and moments of force, a three-dimensional biomechanical model was developed. The inverse dynamics method was used to estimate net joint moments of force. The increased mass of the anterior trunk associated with second trimester of pregnancy may influence some gait variables such as the left step time, left and right stance times, double limb support time, maximum hip extension, maximum pelvic right obliquity, pelvic obliquity range of motion, maximum transversal left rotation and peak hip flexion moments of force.
- Influence of body composition on gait Kinetics throughout pregnancy and postpartum periodPublication . Branco, Marco A. C.; Santos-Rocha, Rita; Vieira, Maria Filomena; Silva, Maria Raquel; Aguiar, Liliana; Veloso, António P.Pregnancy leads to several changes in body composition and morphology of women. It is not clear whether the biomechanical changes occurring in this period are due exclusively to body composition and size or to other physiological factors. The purpose was to quantify the morphology and body composition of women throughout pregnancy and in the postpartum period and identify the contribution of these parameters on the lower limb joints kinetic during gait. Eleven women were assessed longitudinally, regarding anthropometric, body composition, and kinetic parameters of gait. Body composition and body dimensions showed a significant increase during pregnancy and a decrease in the postpartum period. In the postpartum period, body composition was similar to the 1st trimester, except for triceps skinfold, total calf area, and body mass index, with higher results than at the beginning of pregnancy. Regression models were developed to predict women’s internal loading through anthropometric variables. Four models include variables associated with the amount of fat; four models include variables related to overall body weight; three models include fat-free mass; one model includes the shape of the trunk as a predictor variable. Changes in maternal body composition and morphology largely determine kinetic dynamics of the joints in pregnant women.